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Scalar factors for non-canonical subgroup restriction of 
unitary group 

R S Nikam, G G Sahasrabudhe and C R Sarma 
Department of Physics, Indian Institute of Technology, Bombay-400 076, India 

Received 21 September 1982 

Abstract. A procedure has been outlined for obtaining the scalar factors (reduced Wigner 
coefficients) of the unitary group U ( n m ) z U ( n ) O U ( m ) .  This has been done at the 
permutation group level for SN JSN,OSN. ,  and the equality between the scalar factors of 
these two groups has been exploited. It has been shown that the scalar factors can be 
uniquely expressed in terms of the inner and outer product coupling coefficients of the 
permutation group. The ambiguity due to multiplicity is resolved at the level of the above 
coefficients. 

1. Introduction 

The role of quark-quark interactions in providing a better understanding of the NN 

(De Rujula et a1 1975, Neudatchin et a1 1977, De Swart 1980) and NNN (Suzuki et 
a1 1982) potentials is by now well established. The construction of six-quark and 
nine-quark wavefunctions in the colour-spin-isospin (CST) space has been carried out 
recently for specific representations of U(12) 3 U(3)OU(4) (Suzuki et a1 1982, Obuk- 
hovsky et a1 1982). These studies require, as a first step, the determination of the 
scalar factors (SF) for the restriction U(nm) 3 U(n)OU(m).  For SU(6) 3 

SU(3)OSU(2) the SF have been determined for the partition qN+qN- 'Xq of an 
N-quark system (So and Strottman 1979, Strottman 1979). More general sets of SF 
for qN + qN-3 x q3 or, in general, qN + q" x 9"' have only been investigated to a limited 
extent (Suzuki et a1 1982, Obukhovsky et a1 1982, Chen 1981). There are two main 
reasons for the limited investigation of these SF in spite of the considerable importance 
attached to their determination. Firstly, there is a considerable multiplicity problem 
to be tackled arising from both the inner and outer product reductions of the rep- 
resentations of the group. The SF carry all these multiplicity labels and an unambiguous 
identification of their source is necessary before any computation. Secondly, the 
currently popular methods of determining the SF do not provide their direct workable 
definition. Thus in one of the approaches (Chen 1981) a set of cosets of the permutation 
group S N , O S ~ , ,  in S N  has been diagonalised to obtain the SF. In another recent 
approach (Obukhovsky et a1 1982), the SF for the CST group SU(12)3  
SU(3)OSU(2) OSU(2) have been expressed in terms of the coefficients of fractional 
parentage (CFP) of SU(3) and SU(2) which are available. But this, in turn, is a specific 
case and the problem is liable to become complicated for a more general group such 
as SU(8) =I SU(4)OSU(2) (Greenberg 1978). In spite of these limitations, however, 
one of the most interesting results of these investigations has been the realisation that 
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the SF for the restriction U(nm)J.U(n)OU(m) are identical to those for the restriction 
S N  JSN'OSN,,. This result follows from the duality between U(n)  and S N  investigated 
by Kramer and Seligman (1969a, b) and others. In the present note we will make 
use of this identity to work with the permutation group and obtain the necessary SF. 
We have been able to obtain an explicit usable expression for the SF occurring in the 
restriction S N  SNPOSN" in terms of the Clebsch-Gordan coefficients (CGC) and the 
subduction coefficients (sc) of the permutation group. These coefficients are readily 
determinable using just the generators of S N  (Sarma 1981, Sahasrabudhe et a1 1981) 
so that it is possible to determine the SF in a straightforward manner. In this process 
we have also been able to identify the multiplicity factor which leads to complications 
in SF determinations. 

The main procedure is outlined in § 2 and a number of illustrative examples have 
been considered in § 3. A brief discussion of the method is presented in § 4. 

2. Scalar factors for SN J. SNf 0 S N q  

Consider a system of N identical particles whose symmetry group is the permutation 
group SN. We assume that the localisation of each particle requires two coordinate 
spaces (e.g. colour and spin-isospin) so that in terms of these the inner product 
symmetry group of the system is SN x SN. We further partition the system into two 
subsystems such that 1 ,2 ,  . . . , N' define the first subsystem and NI+ 1, . . . , N ' + N "  = 
N define the second. This implies that the basis spanning each SN has to be adapted 
to the outer product subgroup SN,OSN,~.  Under these circumstances the origin of the 
SF can be readily understood in terms of the diagram given below. 

Outer scalar product factor / + sN \ product 

S N ,  0 S N,, S N  X S N  
Inner product x 

inner product 
Outer product x 

outer product \ 
Following the steps outlined in this scheme, we now generate the SF for SN under 
restriction to SN'OSN".  Let [A], [ p ] ,  [U J be three irreducible representations (irreps) 
of SN and consider the product representation [ p ]  x [v] of SN x S N .  The reduction of 
the product representation yields the Clebsch-Gordan series 

(1) [P 1 x [.I = c a ;"EA 1 

where U;" is the multiplicity of occurrence of [ A ]  in [ p ]  x [v]. If 
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are the canonical Young orthogonal basis for S N  with rA used to distinguish between 
multiply occurring [ A ] ,  we have (Hamermesh 1964) 

where the C-coefficients on the right are the standard CGC of S N .  Direct methods are 
now available for determining these coefficients (Schindler and Mirman 1977, Sahas- 
rabudhe et a1 1981). The next step in obtaining the SF is to consider the partitioning 
N = N ' + N " .  The basis states spanning the irreps [A']O[A"],  [ p l ] O [ p " ] ,  [v l ]O[v l ' ]  of 
S N ' O S N , ,  can then be used to induce the irreps [ A ] ,  [ p ] ,  [ v ]  respectively of S N  or oice 
uersa. Before doing this let us first consider the CGC occurring in the reduction of 
[ p ' ]  x [v ']  of S N ,  and [p"]  x [v"] of S N " :  

where, as in (2), and T ~ . .  are used to distinguish the multiply occurring [A'], [ A " ]  in 
[ p ' ]  x [ V I ]  and [p"]  x [v"]  respectively. The outer product of the states defined by (3) 
and (4) then yields the basis states of ( S N ,  x S N , )  0 ( S N , ~  x SN")  as 

We now restrict the outer products on the RHS of ( 5 )  to the product representation 
[ p ]  x [ v ]  of SN so that (Sarma 1981, Kaplan 1975) 

where e,, 8, are indices used to distinguish the multiply occurring [ p ] ,  [ v ]  in [g ' ]O[p ' ' ] ,  
[ d ] O [ v l ' ]  respectively of S N , O S N "  and the S-coefficients are the sc for the restriction 

Since the basis states on the RHS of (2) and (6) are the canonical ones spanning 
S N  J S N ' O S N " .  

the irrep [ p ]  x [ v ]  of SN X S N ,  we obtain the overlap between them as 



1594 R S Nikam, G G Sahasrabudhe and C R Sarma 

In order to proceed to the final step of the scheme outlined in the beginning of 
this section, we need the definition of the SF through (Chen 1981) 

where the coefficients in braces on the right are the required scalar factors, and the 
various multiplicity labels are explained by the diagram below: 

Inner product 
multiplicity 

Outer product 
multiplicity 

Using the definition given in (8) and the unitarity of SF (Chen 1981), we readily 
obtain the result 

= LAITA [CL] [VI [A’ ]  [CL‘] [v’] 
j ,k.j’,j”, k ’ ,  k”  P ‘( j I j k ) ‘ (  j?’ l k f  k ! ! )  

From (9) we find that the index which can cause computational difficulties for SF is 
@A which indicates the multiplicity of occurrence of [ A ]  in [A’]O[A”] in S N  iSN,@SNjt.  
If this occurrence is multiplicity free we find that the LHS of (9) reduces to a single 
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term, and we obtain the result 

The procedure for determining the SF is now evident if we start with definite 
irreps[p] x [v]  of SN and [A ’]@[A”] of S N ,  OSN”. The inner and outer product series 
are then generated from these product representations. All [ A ]  c ([p] X [v]) fl 
([A’]@[h”]) are then selected. For the chosen pair [A’], [A”] we then determine all 
possible [p‘] x [v’], [p”] x [v”] of S N f  and SNfr respectively. From among these product 
representations only those [p’], [p”] and [v’][v”] are retained such that [p’]@[p’’] 2 

[p] and [v’]@[v”]~[v] .  The immediate check is that the number of irreps [ A ]  
(including multiplicity) should be equal to the number of product representations 
([p’]@[p‘’])r”lx ([V’]@[V’’])~”’ since the SF matrix is unitary. For example, let [p] = 
[23], [v] = [2’, 1’1 be any two representations of S6 and [A’] = [2,1], [A”]  = [2,1] be 
two representations of S 3 .  Then 

[ 2 3 ] ~ [ 2 2 ,  1’]=[2’, 1’]+[3, 2, 1]+[3’]+[4, 1*]+[5, 11 
and 

[2,1]@[2, I]= [2’, 12]+[23]+[3, 13]+2[3, 2,1]+[3’]+[4, 1’]+[4, 21. 

This leads to 

[ A I  = ( ~ 2 ~ 1  x [2’, 1’1) n (12, 11@[2,11) 

= D ’ ,  1’1, [3 ,2 ,  111, [3,2,  112, [3’1, [4, 1’1). 
The representations listed above thus label the rows of the SF matrix. Correspond- 

ing to these, the five column labels of the matrix follow on considering the outer 
product [21]@[21] of S3@S3. Each of these [21], in turn, can be expressed in terms 
of inner product irreps [p’] x [v’] of S3 x S3 as 

[211=431~[211, [211~[31,  [211~[211, [ 2 1 1 ~ [ 1 ~ 1 ,  [i31x[211). 
A similar analysis for [A”] = [21] yields an identical set [p”] x [v“] of S3 x S 3 .  Thus 

the product [A’]O[A”]=[21]@[21] can be expressed in terms of the set of irreps 
( [ p ’ ] x [ v ’ ] ) @ ( [ p ’ ’ ] x [ v ” ] ) =  ([p’]@[p”]) x ([v’]O[v’’]). From this set we select only 
those which induce [p] = p3] from [p’]O[p’’] and [v] = [2’1’] from [v’]@[v’’]. This 
yields the following product representations. 

( ~ 2 ~ 1  x [2’, I ~ I ) J .  (U, 1 1 a 2 ,  11) 

= { U ,  11O[2, 11) x ([2,110[21 l l ) ,  U ,  11@[2,11) x ([2, 11@[131), 

U ,  110[2,11) x ([1’1@[2, 1111 U ,  11@[2, 11) x ([131@[131), 

([1310[131) x U ,  11@[2, 1DI. 
These five product representations thus label the columns of the SF matrix. Having 

determined the possible [ A ]  in this manner, we first choose a I?) which has a subtableau 
structure corresponding to a given I?,‘) over the first N ’  particles. We then determine 
the inner product ( C G )  coefficients for all possible [p‘] x [v’] and [p”] x [v”] leading 
respectively to I?,:), I?,:‘) with the [p’l, [U’], [p”], [v”] chosen such that they lead to fixed 
[MI, [ V I  of SN. The sc for [pl.L[~’I@[p’’l and [vI~[v’]@[v”] are also determined. 
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Using the product state as obtained in (6), the overlap with the fixed 1:) is determined, 
leading to the result as on the RHS of (7); we then determine the sc for [A]J.[A‘]O[A”] 
and determine the overlap with 1;) as on the RHS (9). Depending on whether this 
subduction is multiplicity dependent (([A,]J [A‘]O[A”]) > 1) or multiplicity free, (9) or 
(10) is used to determine the SF. In 5 3 we illustrate the working of this scheme using 
a number of examples. 

3. Illustrative examples 

We first generate the SF matrix for a nine-quark system studied by Suzuki e? a1 (1982) 
for the groupsubgroup chain SU(12) 3 SU(3)OSU(4) in the CST space for the partition 
9 = 6 + 3. The corresponding permutation group chain we need to consider is S9 2 
S6Os3. One of the tables (table 5 ,  Suzuki er a1 1982) deals with the representations 
[p], [v], [A‘], [A”] corresponding to [33], [7, 1’1, [2’, 1’1, [13] respectively. Using the 
analysis of D 2 we find that only the representations [A] = [3,2’], [32][13], [3’, 2, 13 
of S9 need to be considered. These representations are multiplicity free in [2’, l’]O[ 13] 
of !%Os3 so that (10) may be used. The possible product representations 
( [ p ’ ] ~ [ p ’ ~ ] ) ~ ~ ’ ( [ v ’ ] ~ [ v ~ ~ ] ) ~ ~ ~  of (S6Os3) x (s60s3) c (s9 x s9) are ([23]~[13])r331 x 
( [ 5 ,  1]0[3])[7”’1, ([23]O[13])[331x ([4, 12]0[3])[73”1 and ([321]0[2, l])r331 x 
( [ 5 ,  1]O[2, l])r79”1, As an illustration we generate below the row of the SF matrix 
corresponding to ([23]O[13])r331 x ( [ 5 ,  1]O[3])r7s”1. For [3, 23]J[22, 1’]0[13], the 
reference basis states chosen are 

so that the sc is non-zero. In the above the lower entries 
symbols defined in terms of standard Young tableaux as 

(123412341) = 159 
26 
37 
48 

are lattice permutation 

etc. Since the lattice permutation symbol also defines the Young diagram correspond- 
ing to the given representation, we will henceforth avoid mentioning the representation 
explicitly in the basis kets. The ccc for [3, 23] c [33] x [7, 1’3 can be readily determined 
(Sahasrabudhe e? a1 1981, Schindler and Mirman (1977) so that 

l(123412341)) = (5 /12~~){~~([1123]23123))~( [1211]11131))  

- ~J3~([1123]21323))~([1211]11131)) + ~dii~([1123123123)) 
x 1(1211]11131)) -~-/([1123]12233))~([1211]11311)) 

+~i/([423]21233))~([1211]11311)) 

+3J7/5~([1123112233))/([1211]13111)) 

+ sJz1731 ([ 1 1231 1223 3))1([ 12 1 13 1 13 1 1)) 

-~J~~( [1123 ]21233) )~ ( [1211 ]31111) )  
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- J51([ 1 1231 12323))) ([ 12 1 111 13 1 1 )) 

+ )([1123]21323))~([1211]11311)) 

+s5j([1123]23123))(([ 121 111 131 1)) 

- $J14/51([1123]23 123))/([ 12 11113 11 1 )) 

-~J21/5/([1123]23123))~([1211]31111)) 

- J21/5~([1123]12323))~([1211]13111)) 

- S J 7 / 5 1 ( [  1123]21323))~([1211]13111)) 

- $J42/51([ 1123]21323))~([1211]3111 l ))}  

1597 

where for compactness we have introduced the square brackets in each lattice permuta- 
tion symbol to define products such as 

([ 1 123]12233))(([ 12 1 11 13 1 1 1)) = ( 1 /&)I( 1 123 12233))1( 12 1 1 13 1 1 1)) 

- /(121312233))/(112113111)) + /(123112233))~(111213111)). (12) 

l(123412)) = /([1223]23))/([1211]11)) (13) 

l(123)) = 1(123))1(111)). (14) 

Similarly, 

and 

Using the procedures for outer product reduction (Kaplan 1975, Sarma 1981) and 
the results of (13), (14), we obtain the result 

( I (  123412)) 0 I (  123))f3’] x[71*1 

= ~ ~ 3 3 1 ~ 1 ~ ~ ~ ~ 2 3 l 2 3 ~ ~ G l ~ ~ 2 3 ~ ~ ~ ~ ~ ~ ~ ~ ’ l ~ ~ ~ ~ ~ ~ ~ l ~ ~ ~ ~ ~ 1 ~ ~ ~ ~ ~ ~ ~  
= (1/2fi)l([1123]23123)) x {~~( [1211]11113) )  

+ 3 I([ 12 1 111 1 13 1)) + 2 4 ( [  12 1 111 13 1 1))). 

The overlap of (11) and (15) yields the RHS of (9) as 

(( 1234 1234 1)/ (I 1234 12)) 0 I ( 1 23)))[3’1x[79121) = 1 / 3JZ. 

On the other hand, 

(I( 1234 12))O I( 123)))r392” = (1/3JT){J31(1234 1234 1)) 

- J31( 1234 1234 14)) + ./El ( 12 34 1 2 134))) 

so that the required sc is 

s( [323] 1 !2212] 1 
(123412341) (123412) (123) 

Thus the multiplicity free SF resulting from (10) is 

[ [3,231 I ~ 3 ~ 1  17, i2] 1 
P2, 1’1[1’] [23][13] [5,1][3] 

For the representation [32, 13] of S9 a similar procedure can be readily carried out. 
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The CGC for this representation can be obtained as before in terms of the basis 
spanning [33] x [7,1’]. The product states spanning [33] x [7, 1’1 induced from 
([23]0[13])r3’1x([5, 1]0[3])r7”21 are the same as on the RHS of (15). The overlap 
factor can thus be determined. The required sc can be determined as outlined earlier 
so that 

(overlap factor) 
[z2, 1’1 [i31 

(123412) (123) 

= (3 /J2)  x (2/3J?) = J2/3. 
Similar analysis for the representation [3’, 2, 11 yields zero SF so that we 
first row of the SF matrix as 

(19) 

obtain the 

[3, 231 [3’, i31 [3’, 2,11 
I 1 i j J? JZlJ5 o * 

([23]0[13])[33Jx ( [ 5 ,  13 x [3])[7J2] - - 

We find that the result agrees both in sign and magnitude with the reduced Wigner 
coefficients for SU(12) 2 SU(3)0SU(4)  in the partition q9 + q6 x q3 obtained by Suzuki 
et a1 (1982). 

As a final example we have generated the complete five-dimensional SF matrix 
for the representations [ ~ ] = [ 2 ~ ] ,  [ ~ ] = [ 2 ~ ,  1’3 of s6 induced from [Af]=[& 13 and 
[A“] = [2, 11 of S 3 0 S 3 .  The columns of the SF matrix have been labelled by the product 
representations 

3 [22,1*1 ([2, 1]0[2, ~ I ) [ ~ ’ ~ X  (12, 1]0[2, 1])[22-123([2, 110[2, 11)[~’~([2, 110[1 3) 
(12, 11012, 

, 

x ([ i3]0[2,  i1)[~’~~’1,([2, 110[2, 11)~”~ 

x ([ 13130 [ 13])[2’J2’ , ([13]30[13])[””([2, 110 [2, 1])[22,121 

and the rows by [22, 1’1, [32], [4, 12], [3,2, 111, [3,2, 112. We find that the first three 
rows are multiplicity free and can be readily determined. The necessary CGC for each 
[A] of s6 have been listed in table 1. The induced product representations are 
summarised in table 2. Using these, the necessary overlap factor can be obtained. In 
addition we require also the sc for [A]i[2,1]0[2,1]. These have been presented in 
table 3. Using the results of these tables and (10) we can easily determine the first 
three rows of the SF matrix listed in table 4. The only case of multiplicity is the 
representation [3,2, 11 of S6 which occurs twice in [2, 1 ]0[2 ,  13. In this case the 
overlap factors are still as determined from the appropriate rows of tables 1 and 2 
but the LHS of (9) is now a sum over two terms. Noting that this occurrence is due 
to the outer product multiplicity, we can shift the ambiguity in determining the SF to 
the SC.  Thus, by choosing a set of sc which have non-zero values for only one state 
/ [ 3 3 2 j  ‘I1) we can again use (10) and determine the SF as for the multiplicity free case. 
The SF for [3,2, 112 can then be readily determined by using row orthogonality at 
the SF matrix and normalisation of the basis. The results obtained are presented in 
the last two rows of table 4. If the multiplicity happens to be >2, one of the rows of 
the SF matrix for this [A] can be determined as in the present case. For the other 
rows, the row and column orthogonalities of the unitary SF matrix can be used to 
determine the required quantities. 
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Table 1. Inner product expansion of basis states 1;) of S g  in terms of product states 
spanning [ w ]  x [ v ]  expressed in terms of Lattice permutation symbols. 

i(121311)) = li112233)) x {-(1/2J3)1(121342)) 
- ( 1 /2J6)1( 12 1324)) + ( 1 /J6)1( 123 142))) + 1i 1 12323)) 
x {(1/2J6)1(121234)) -fii123 1241) + (1/3J2)1i 123142j)) 
+ l(121233)) x {- (1/2J6)1(112324j) - (1/2J3j1i112342))} 
+(1/2J6)((121323)) x l(112234)) 
+ l(123123)) x {-(1/2h) l (112234))  +i1(112324)) 
-(1/3&)1(112342))} 

+ (&/6h) / (123124) )  + i&/3&)/(123142))} 
+ (i121233j){(J$/6J-811(112324i) + (J$/6h)/(112342))} 
+ l(112323)) x {i1/:/6\16)1i121234)) - (Ji6/9)1i121324)) 
+ (J?/9)1(121342))+ (JJ/9)ji123124)) - (J5/9J231(123142)) 
- (2/3J6j1(1234123)3 + i(121323 j) x {-(~i%9)1(112324))  
+ (&/6J6))(112234)) + $5/9)1i112342))} + ‘(123123)) 

l i  12 1 122)) = ‘i 11 2233)) x {ids/6&)li 12 1324)) + ( 5 / 6 f i ) l ( 1 2  1342 1) 

~{ iJ~/6~’3) / (112234))+(J~/9)( (112324)) - (~5/9J2)~ i112342)) }  
((121342)) = l(112323)) x (-t2/3JZ)((112234)) - (2/JG)/i123124))} 

+ I( 11 2233 j) x {( 2/3&)1( 12 1324 j) - (2/3&)1( 123 124))} 
-(2/3+’z)l(121323))x l(112234)) 
+ ((123 123)) x {(2/3&)1(112234j) + (2 /~15) / i112324) ) }  
+ (2/3Ji6)1( 12 123 3)) + j (  1 12324)) 

, ( 12 132 1 )) = I( 1 12233) X { - i 1 /JE)l ( 12 1324)) + i 1 /JJj1( 123 124)) 
- (1/4JJ)l(12l342)) + (1/2:10)1123142))} + l(121233)) 
x { - i l / J z ) l i l 1 2 3 2 4 ) )  - (1/445)1(112342))} + 1i112323)) 
x { - ( l / J G j I i  1212341) - (Ji/2JE)I i123142))} - ( i /J i6 (121323) )  
x (112234)) t  ;1123123)) x {(i/JZj1(112234)) + (J3/2JG)1(112342))} 

4. Discussion 

The procedure outlined in 8 2 is computationally feasible. There are basically three 
stages in implementing it. Firstly, we require the CGC for one state I[:]) of S N  in terms 
of the basis spanning [ p ]  x [VI. The procedure for determining these coefficients is 
now readily avaliable (Schindler and Mirman 1977, Sahasrabudhe et a1 1981). The 
second stage of the procedure involves the determination of the sc leading to 1‘:’) 
from states spanning [A ’]@[A”] and similar ones for [ p ]  and [ V I  induced from [ p ’ ] @ [ p ” ]  
and [Y’]@[V”] respectively. The procedures for determining these coefficients are 
relatively simple (Kaplan 1975, Sarma 1981). The final stage involves use of (9) or 
(10). For the multiplicity free case this is relatively simple. For two-fold multiplicity, 
the sc can be chosen suit:-bly so that the multiplicity free approach can be used. For 
a three or higher-fold multiplicity we can use the fact that the SF matrix is unitary to 
generate the necessary quantities. 

The procedure is also interesting in that it clearly brings out the origin of multiplicity 
factors which can cause computational difficulties. This is an advantage since, as 
illustrated in P 3, we can shift the ambiguity to the sc from the SF and simplify the 
calculations to some extent. 
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Table 2. Basis states of [23]~[22,  1’3 of Sg induced from ( [ ~ ‘ ] @ [ ~ L I ’ ] ) x ( [ u ’ ] O [ u l ’ ] )  of 
(S3OS3) X(S3OS3). 

Table 3. Subduction coefficient occurring in the restriction [A]J[2, 11 X [2, 11 of S 6 J S 3 0 S 3  
where [A] = [4, 12], [32], [2*, 12], [3,2, 1]1,[3,2, 112. 

[4, 121 l(112113)) 
1 ( 1 12 13 1)) 
l(112311)) 

D21 I( 11 2 122)) 
l(112212)) 

D2, 121 l(112234)) 
l(112324)) 
l(112342)) 

[3,2,111 I( 1 12 123)) 
l(112132)) 
1 (1 122 13)) 
l(11223 1)) 
I( 1 123 12)) 
l(112321)) 

[3,2,112 l(112123)) 
I( 1 12 132)) 
I( 112213)) 
l(11223 1)) 
I( 112312)) 
l(112321)) 

0 
J512 J6 

1/6_ 
2J2/3 
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Table 4. Isoscalar factors for [23]x[2212] of S6 under the restriction [h]l[hl]O[Az] = 
[2110[21] of s30s3. 

In spite of the large number of examples considered in $ 3 ,  the procedure has 
inherent limitations which need to be brought out. The major one is that extensive 
tables of SF cannot be prepared since the procedure has not been programmed. As 
already mentioned, a number of stages are involved and each stage could require 
quite complicated logic. At the same time, any specific set of SF required could be 
readily generated without going to a computer. It is this limitation which shows up 
as a disadvantage when compared with other methods such as those of Suzuki et a1 
(1982) or Obukhovsky et a1 (1982). In spite of some of the obvious advantages of 
these methods over ours, it should be emphasised that they are tied up with either 
the knowledge of the Wigner and Racah coefficients of SU(3) or the CFP. Thus a 
direct extension to general SU(nm) =) SU(n)  OSU(m) does not appear feasible, unlike 
in the present procedure which is completely independent of the orders n,  m. 
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